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Abstract-Presented here are numerical verifications of a geometrically-exact curved beam model
which fully accounts for large rotations, large displacements, initial curvatures and extensionality.
A multiple shooting method is used to solve the two-point boundary-value problem of flexible
beams undergoing large elastic rotations and displacements in three-dimensional space. :-Jumerically
exact large static deformations of eight beams subjected to different loading and/or boundary
conditions are obtained. These solutions can be used to verify the performance of general finite­
element codes in analyzing large structural deformations.

1. INTRODUCTION

Flexible structures have been used in many real-world machines. For example, leaf springs
are used in the suspension systems of cars. Helical springs are used in the shock absorbers
of racing motorcycles. Flexible metal strips are used in controlling the arm-type positioning
mechanisms of magnetic disk drivers of computers. Transmission cables are very often
subjected to large deflections. Helicopter rotor blades and wind turbine blades are flexible
beams. Moreover, because of weight considerations, aircraft structures are often designed
to work under postbuckling conditions. A high-altitude long-endurance (HALE) vehicle
can have wing tip deflections about 25% of its wing span (Henderson, 1990).

Furthermore, the recent rapid developments in aerospace exploration have stimulated
extensive research into the mechanics of large flexible space structures, such as solar
collectors, dish antennas, radar arrays, truss structures, space telescopes and space stations.
These space structures are usually flexible due to considerations about weight and ease of
storage during launching. For example, the Radio Astronomy Explorer Satellite (Stone,
1965) used a 460 m antenna for detecting low-frequency signals. Such flexible structures
can undergo large displacements and rotations without exceeding their elastic limits. To
understand the behaviors of such flexible structures and to evaluate their actual load
carrying capacity, more advances in modeling and computational methods are necessary.

How to deal with large rigid-body rotations is the key issue in modeling flexible
structures. Since rigid-body rotations contribute no strains, strain measures to be used in
modeling flexible structures need to exclude the influence of rigid-body rotations and such
strains are called objective strains. Green-Lagrange strains are objective and this is the very
reason why they are widely used in nonlinear structural analysis (e.g. Palazotto and Dennis,
1992). Unfortunately, Green-Lagrange strains are energy measures and hence material
constants obtained in experiments by using engineering stresses and strains (they are
geometric measures) cannot be directly used to relate Green-Lagrange strains to their
work-conjugate stresses (i.e. second Piola-Kirchhoff stresses) in the constitutive equation.
For example, Pai and Nayfeh (1994a) showed that for an isotropic prismatic bar subjected
to an axial geometric strain til = 0.04 (the limit of small-strain problems, according to
Bathe, 1982), a 6% error is involved if a constant Young's modulus is used in the constitutive

1335



1336 P. F. Pai and A. N. Palazotto

equation of the Green-Lagrange strains and the second Piola-Kirchhoff stresses, instead
of using a deformation-dependent modulus. To exclude rigid-body rotations from strain­
displacement relations, Horrigmoe and Bergan (1978) and Nygard and Bergan (1989)
proposed a procedure which applies a Lagrangian formulation together with a corotated
"ghost" reference. Pai and Nayfeh (1991, 1994b) proposed the use of a local reference
frame and local displacements in deriving objective strains and they used the derived so­
called local engineering stresses and strains to derive geometrically-exact structural theories.
Also, Pai and Palazotto (1995) proved that the local engineering strains are equivalent to
the Jaumann strains, which are defined in continuum mechanics books (e.g. Malvern, 1969)
by using the right stretch tensor from the polar decomposition of the deformation gradient
tensor. Moreover, Pai and Palazotto (1995) showed that Jaumann strains (or local engin­
eering strains) are objective geometric measures and can be easily derived by using the
concept of local displacements without performing any polar decomposition. It happens
that the local reference frame used by Pai and Nayfeh (1991, 1994b) is similar to the
corotated "ghost" reference frame used by Nygard and Bergan (1989). However, the
"ghost" reference frame is chosen such that its rotation represents the average rotation of
the deformed frame, and the local reference frame used by Pai and Nayfeh (1991, 1994b)
is located such that the Jaumann strain tensor is symmetric (Pai and Palazotto, 1995).

In analyzing large static deformations of flexible structures, finite-difference methods,
finite-element methods and some numerical methods are usually used. For example, Min­
guet and Dugundji (1990) used the finite-difference method to solve fully nonlinear beam
equations directly for large static deflections. The finite-element method is the mostly used
method in analyzing nonlinear structures (e.g., Oden, 1972; Bathe, 1982; Bauchau and
Hong, 1987; Stemple and Lee, 1988; Wriggers and Simo, 1990; Atilgan and Hodges, 1991 ;
Palazotto and Dennis, 1992). Holden (1972) solved for large static beam deflections by
using a fourth-order Runge-Kutta integration method and Wang (1991) used the fifth­
order Runge-Kutta-Fehlberg method. Goto et al. (1992) used a combination of the transfer
matrix technique (Pestel and Leckie, 1963) and the incremental arc-length method (Riks,
1979) to study the so-called limit-load instability of an elastic ring subjected to a radial
twisting moment by using a nonlinear Euler-Bernoulli beam model. Although the finite­
element method is still the most popular method for analyzing complex structures because
of its systematic approach of treating different structural elements and system boundaries,
finite-element solutions are always approximate answers because of the use of polynomial
shape functions and variational formulations. Moreover, using different stress and strain
measures, different methods of meshing the geometric domain, different iteration methods
in solving nonlinear algebra equations and even different methods of tracing the equilibrium
path can result in different solution errors in finite-element analyses. Hence, some exact
solutions are useful in order to check finite-element codes.

The objectives of this paper are to provide some numerical verifications of the curved
beam model of Pai and Nayfeh (1994b) by using a multiple shooting method and then to
obtain large-deformation solutions to some beam problems to be used for comparison in
verifying the performance of finite-element codes. Especially, we are interested in obtaining
the solution of the problem studied by Goto et al. (1992) since nonlinear geometric coupling
between bending and torsion as well as highly large displacements and rotations are involved
in this particular problem.

2. GOVERNING EQUATIONS

In modeling a naturally curved and twisted beam as shown in Fig. I, Pai and Nayfeh
(1994b) used three coordinate systems. The system xyz is an orthogonal curvilinear coor­
dinate system, where the axis x denotes the undeformed reference line of the beam and s is
the undeformed arc length from the root of the beam to the reference point on the observed
cross section. The system XYZ is a rectangular coordinate system used for reference purpose
in calculating initial curvatures. Moreover, the system ~'1( is a local orthogonal curvilinear
coordinate system, where the axis ~ represents the deformed reference line and the axes f]

and ( represent the deformed configurations of the axes y and z only if there were no shear
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Fig. I. Coordinate systems: XYZ is a rectangular frame; xyz is an orthogonal curvilinear frame.
where the x axis represents the undeformed reference line and the y and z axes are on the observed
cross-section and perpendicular to x; and ~rr( is a local orthogonal curvilinear coordinate system,

where the ~ axis represents the deformed reference line.

and torsional warpings. Moreover, in ii' and iz are unit vectors along the axes x, y and z,
respectively and iI, iz and i3are unit vectors along the axes ~, '1, and (, respectively. It can
be shown that (Reissner, 1973; Pai and Nayfeh, 1994b):

(1)

where k l is the initial twisting curvature and k z and k 3 are the initial bending curvatures.
Moreover, the deformed coordinate system ~'1' and the undeformed coordinate system xyz
are related by the transformation matrix [T] as (Alkire, 1984; Pai and Nayfeh, 1994b)

(2)

where

[T"
TI2

T" ]
[T) == T21 T22 TZ3

T31 T32 T33

~ [~
0

o ][ T"
TI2

T" ]
cos¢ sin¢ - T lz Til + TT3/(1 + Til) -TIZT~3/(1+TII) (3)

-sin¢ cos¢ - T I3 - T lz T 13 /(1 + TId Til + Tj 2/(1 + Til)

l+u'-vk3 +wk2

I+e
v' +uk3 -wk lTI2 =------

l+e

w' -uk? +vk lT - -
13 - 1+e (4)

Here, u, v and ware the displacements of the observed reference point with respect to the
axes x, y and z, respectively, e is the axial strain on the reference line, ¢ is an Euler angle
related to the twisting with respect to the deformed reference axis ~ and ( )' == a( )/as. It
follows from eqn (3) that T2i and T3i can be represented in terms of Til, T IZ , T I3 and ¢ as
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. ( TL ) T I2 T 13
T32 = -smcjJ T ,1 +-

1
-- -coscjJ~1T
+T jl + II

Because [T] is a unitary matrix, we have the identity

(5)

(6)

Differentiating eqn (2) with respect to s and using eqns (2) and (1), we obtain

where

(7a)

(7b)

PI is the twisting curvature and P2 and P3 are the bending curvatures. We note that Pi are
not real curvatures because the differentiation is with respect to the undeformed element
length ds and not the deformed length (1 +e) ds. Multiplying eqn (7b) by [T] and using
eqn (6) yields

(8)

Using eqns (7a), (2) and (1), one can show that

= (T'lix +T32 ir +T33U

. [T; Iix + T;2il + T;3i~ + T21 (k,iy-k2U + Tn (k j i~ -k3ix ) + T23 (k 2ix -k j iJ]

+ (T33 Tn - T32 T23 )k j + (T31 T23 - T,3 T21 )k2+ (T32 T21 - T,I Tn )k3

= T31 T;1 + T32 T;2 + T33 T;3 + Tljk l + T I2 k 2+ T 13 k 3, (9)

where we used the identities i l x i2 = i3, i2Xi3 = i j and i3x i l = i2. Substituting eqn (5) into
eqn (9), one can show that
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(10)

Using the extended Hamilton principle, the local engineering stresses and strains [i.e.
Jaumann stresses and strains (see Malvern, 1969; Pai and Palazotto, 1995)], and a new
interpretation and manipulation of orthogonal virtual rotations, Pai and Nayfeh (1994b)
derived six fully non-linear equations of motion describing one extension, two bending, one
torsion and two shearing vibrations. Since we consider highly thin and flexible beams, shear
deformations are neglected in this paper. Without shear deformations, these governing
equations can be written as

(11 )

(12)

where {F} == {F I , F2 , F3r, {M} == {Mj, M 2 , M 3r, F, are the stress resultants, and M i are
the stress moments. We note that eqns (11) and (12) are the same as those derived by
Reissner (1973) (when shear deformations are excluded) by using another approach. The
stress resultants and moments are defined as

dydz (13)

where A denotes the cross-section area and (iii are Jaumann stresses. F2 and F 3 are transverse
shear resultants, which can be represented in terms of stress moments and their derivatives
by using eqn (12). It is inappropriate to represent F2 and F3 in terms of transverse shear
stresses because transverse shear strains and hence transverse shear stresses are neglected
in the Euler-Bernoulli beam theory. Furthermore, qj, q2 and q3 are distributed external
forces acting along the axes x, y and z, respectively, and q4, qs and q6 are distributed
external moments acting along the axes ~, I}, and (, respectively.

For isotropic beams, the constitutive equation is

[

E 0 O]!elll
= 0 G 0 e 12 ,

o 0 G el 1

(14)

where eij are Jaumann strains. E is Young's modulus, G is the shear modulus and
(in = (i33 = (i23 = 0 is assumed. The strain-displacement relations are (Pai and Nayfeh,
1994b)

ell = e+ Z(P2 -k2) - Y(P3 -k3 ) + (PI -kl)'g

e12 = (PI-kl)(-z+g,)

el3 = (PI -kj)(y+gJ, (15)

where g(y, z) is a torsion-induced out-of-plane warping function, g, == ogloy andgc == cgjcz.
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Substituting eqns (14) and (15) into eqn (13), neglecting the influence of torsional warping
on Ell (i.e. setting (PI-kIY = 0) and assuming that the cross section is a rectangular one
having width b along the axis y and thickness h along the axis z and that the reference axis
passes through the area centroid, we obtain that

where

EA

o
o
o

0 0

eJ 0

0 EI22

0 0

o
o
o I

e

PI-k l

P2 -k2

P3- k l

(16)

I - I bh3 - I hb3
22 = T2 ' I B = T2 '

J = f (y2 + Z2 + yg2 - zgJ dy dz = ~bh3 (I - 19s2}2 _t .. nls tanh n
2
n:). (17)

A nbn-I ..,.

For thick curved beams, significant extension-bending couplings may exist because of the
trapezoidal edge effect, which is an effect due to the fact that the undeformed element length
at (y, z) i= (0,0) is not equal to that at (y, z) = (0, 0). Since only thin flexible beams are
considered, the trapezoidal-edge effect and hence the extension-bending coupling induced
by initial bending curvatures are neglected in eqn (16). Extension-bending and extension­
twist couplings induced by initial bending and twist curvatures can be important for thick
and/or anisotropic beams. For these coupling effects, readers are referred to the work of
Berdichevskii and Staroselsky (1979) and Cesnik and Hodges (1993). The polar moment
of inertia J( i= 122 + I B ) in eqn (17) accounts for the influence of the torsional warping effect
on the torsional stiffness (Timoshenko and Goodier, 1970).

Expanding eqns (II) and (12) yields

F'I = P3F2 -P2F3 - Tllql - T I2 q2 - T I3 q3

F; = PIF3-P3FI - T21 ql - T22 q2 - T23 q3

F'1 = P2 F I - PI F2- T31 ql - T32 q2 - TB q3

M; = P3M2 -P2M3 -q4

M; = PIM 3-P3MI +(1 +e)F3-qs

Mj = P2MI -P IM 2-(1 +e)F2-q6.

It follows from eqn (8) that

Til =P3T21-P2T31+TI2k3-TI3k2

T;2 = P3T22-P2T32+TI3kl-Tllk3

T I3 = P3T13-P1T33+Tllk2-Tllkj.

Substituting eqns (l8h) and (l8i) into eqn (10) yields

(l8a)

(l8b)

(l8c)

(l8d)

(l8e)

(l8f)

(l8g)

(l8h)

(l8i)

-+..' k k T I3
'I' = PI-Til I-TI2k2-TI3 3-

1
+

TII
(P3T22-P2T32+TI3kl-Tllk3)

T I2
+ I + TIl (P3 T23 - P2 TB + Til k1- T I2 k l ). (18j)

Moreover, it follows from eqn (4) that
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u' = -1+vk3 -wk2 +(1+e)T
"

v' = wk l -uk,+(1+e)T l1

w' = uk 2 -vk l +(1 +e)TI3 .
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(18k)

(181 )

(18m)

Equations (18a-m) are the 13 govern differential equations, where T2 , and T'i are functions
of Til, T 12 , T

"
and ¢ (see eqn (5)) and it follows from eqn (16) that

F)~
IlEA 0 0 0

(~}(n
0 IjG) 0 0

0 0 IjE/22 0

P3 0 0 0 I/E/j3

Hence, there are only 13 unknown dependent variables:

(19)

The boundary conditions are of the form (Pai and Nayfeh, I 994b)

u=o or F, = const.

6v = 0 or F, = const.

e5w = 0 or Fe = const.

bel =0 or M I = const.

be2 =0 or M2 = const.

be 3 = 0 or M, = const. (20)

where F" F, and Fe are the projections of stress resultants along the axes x, y and z,
respectively, and be], be2 and e5e, are virtual rotations with respect to the axes (, fl, and (,
respectively. They are given by

F, == F] T '2 +F2 T22 +F3 Tn

F == F, T I3 +F2 Tn +F, Tj3

be2 = - (T31 bTl I + Tn e5T I2 + T33 6T13 )

6e 3 = T21 6TII + T22 6T12 + T23 6T13 •

(21)

(22)

It can be seen from eqn (20) that there are only 12 boundary conditions (six at each
end) and hence the order of the system is 12. Consequently, only 12 of the 13 unknown
variables are independent and one of the differential equations (18a-m) is redundant, which
is because i , is a unit vector and hence

(23)

In other words, Til is known when T I2 and T I3 are specified. However, using the 13
equations shown in eqns (18a-m) instead of using 12 equations makes the programming
easier and the numerical results from the redundant equation can be used to double-check
the results. But, in order to satisfy eqn (23), we use
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(24)

in calculating Til and use eqn (18g) in calculating the Jacobian of this differential equation.

3. NUMERICAL RESULTS AND DISCUSSIONS

Since problems involving very large displacements and rotations are considered in this
paper, a simple shooting method is not able to handle serious ill-conditioning problems
due to nonlinearities. To solve such highly nonlinear two-point boundary value problems,
we adopt the multiple shooting method and use the IMSL subroutine DBVPMS (Sewell,
1982). The problem is also parameterized by using a parameter p such that the problem is
linear when p = 0 and the original nonlinear problem is recovered when p = 1. Differential
equation error tolerance DTOL and boundary condition error tolerance BTOL (Sewell,
1982) are typically chosen as DTOL = 1.0 x 10- 7 and BTOL = 1.0 x 10- 5 for all the cases.
Although there is no difficulty in obtaining any desired accuracy by using smaller values
for DTOL and BTOL, using smaller DTOL and BTOL causes more computational effort
with no significant change in the solution. Since the original differential equations are
directly solved and any solution accuracy can be obtained, the obtained solutions are
numerically exact. All the· numerical results in this paper were obtained by using a 33 MHz
486 computer.

Eight cases of large static deformations are considered in this paper.

I. Cantilever subjected to end moment (Fig. 2)
In this standard example an initially straight cantilever having length L is bent into a

circular arc by an bending moment at the free end. At the fixed end, because i 3 = iz and
hence T31 = T 32 = 0 and T 33 = I, it follows from eqn (22) that <58 1 = <5Tn Moreover,
because i l = i, and hence Til = T I2 = 0 and Til = I, it follows from eqn (5) that T23 = sin
¢. Consequently, the boundary condition b8 1 = 0 is equivalent to ¢ = O. Similarly, one can
show that b82 = -<5T I3 and b83 = <5TI2 . Hence, the boundary conditions are

at s = 0: u = v = w = ¢ = T I3 = T I2 = 0, Til = I

2nE/22M 2 =n--
L
-,

(25)

where n represents a non-dimensionalized bending moment. The chosen material properties
and beam geometry for Cases I-VI are

n=1/20

n=1/10

n=1/5
n=1/2---------- ----. n=1/4

n=1/3

M,= n 27tC111

~~~::=--------;8

ZlL

0.2

0

-0.2

-0.4

-0.6

-0.8

-1 +-,_~,_~,_~,_~,_~_,__,___, XlL

-0.2 0 0.2 0.4 0.6 0.8 1

Fig. 2. The deformation of a cantilever subjected to an end moment M 2 •



Large-deformation analysis of flexible beams 1343

E=lxl07 psi, v=0.3

b = 0.1 in. h = 0.01 in. L = lOin

(26)

where v is Poisson's ratio. Since we use normalized variables and shear effects are neglected
in this paper, the beam geometry does not influence the numerical results shown in Figs 2­
9.

For this problem, the exact solution can be obtained from the governing equations
(11), (12) and (16). Because of the special loading condition, 1\12(s) = 1\12 = constant
and F, = F2 = F3 = 1\1, = 1\13 = O. Hence, it follows from eqn (16) that e = 0 and hence
P2 = '¥!L, where '¥ denotes the sector angle formed by the deformed beam reference line.
Consequently, it follows from eqn (16) that

(27)

Figure 2 shows that the obtained numerical solutions are exactly the same as that predicted
by eqn (27). However, because only 21 points (i.e. 21 shooting points) are used to describe
the deformed reference axis and they are connected by straight lines, the deformed beam
looks like a piecewise straight curve when 1\12 is large.

II. First-mode buckling ofcantilever (Fig. 3)
We consider the same cantilever shown in eqn (26) subjected to an axial load. Timo­

shenko and Gere (1961) used the linear Euler-Bernoulli beam theory to show that the
critical buckling load Fer is

ZlL

1

<Xl
<0 '"

0.8
,..;

0.6
"". iO
~';l

0.4
",<>

~.

\s:>"
\):l~

0.2 \.0\
\.005
1.003
n=1.001

0 -,
F, =-n \~l?2

-0.2

XlL
-0.2 0 0.2 0.4 0.6 0.8

(a)

1.2

0.8

0.6

0.4

0.2

-0.2

2 3

n (=-F, "tg;" )
(b)

Fig. 3. The first-mode buckling of a cantilever: (a) the deformed configuration and (b) the force­
end deflection curve.
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ZlL
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0.8

0.6

0.4

0.2

o

-0.2

X/L
-0.2 0 0.2 0.4 0.6 0.8

(8)

1.2.,-------------,

0.8

0.6

0.4

0.2
W(l)/l

-0.2

+--~--------- -- -- ---

2 3

(
_ 4l2 )n --F, 3'1['EIz2
(b)

Fig. 4. The second-mode buckling ofa cantilever: (a) the deformed configuration and (b) the force­
end deflection curve.

where m is the mode number of the buckled configuration.
The boundary conditions are

at s = 0 : u = v = IV = ¢ = T I3 = T I2 = 0, T I I = I

(28)

ats = L: F, = F= = M , = j\12 = M 3 = 0, (29)

Figure 3 shows that when n < 1.0 there is no transverse deflection, which confirms the
linear theory prediction. However, when n > 1.0, the transverse deflection is finite because
deflections are limited by nonlinear structural terms, which is different from the linear
theory prediction. Moreover, the force-end deflection curve shown in Fig. 3b is the same
as that obtained by Sinclair (1979) for very thin beams. We point out here that 31 shooting
points are used for Case II through Case VII.

III. Second-mode buckling of cantilever (Fig. 4)
For the buckling of cantilevers, most researchers studied the first-mode buckling.

Because of initial imperfection and/or external constraints, other higher-mode buckling can
also occur in real structures. For the second-mode buckling, the boundary conditions are
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X/L

1.2-.------------~

0.8

0.6

0.4

0.2
+--~ __f _

0,5 1 1.5

(
4L'n =-F,. 521t'EI,,)

(b)

Fig. 5. The third-mode buckling of a cantilever: (a) the deformed configuration and (b) the force­
end deflection curve.

9--- 2 0
I
I
I
1
1
I
I
I

§'....."------------ x

(a) (b)

-x

Fig. 6. The buckled configurations of a cantilever: (a) the second mode and (b) the third mode.

at s = 0: u = v = HI = ¢ = T '3 = T I2 = 0, Til = 1

at s = L: (30)

Figure 4 shows that when n < 1.0 there is no transverse deflection, which confirms the
linear theory prediction.

IV. Third-mode buckling olcantilever (Fig. 5)
For the third-mode buckling, the boundary conditions are

ats = 0: u = v = HI = ¢ = T I3 = T I2 = 0, Til = 1

at s = L: (31 )
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(a)

1.2-,-----------------,

0.8

0.6

0.4

0.2

10
o+-~----.---._-___._~-r__~_I

o 4 6

n (=F, 1tt~~)
(b)

Fig. 7. The deformation of a cantilever subjected to a transverse end load F,: (a) the deformed
configuration and (b) the force--end deflection curve.

Figure 5 shows that when n < 1.0 there is no transverse deflection, which confirms the
linear theory prediction.

The buckled configuration of the second mode (see Fig. 6a) shows the relation

02 = 2 x 23, (32)

where 02 is the distance shown in the figure from point 0 to 2. The buckled configuration
of the third mode (see Fig. 6b) shows the relation

02 = 24 = 2 x 45. (33)

However, the mode shapes are not cosine or sine functions.
We point out here that one axial load may correspond to several buckled configur­

ations. For example, if F, = - 30n2Eln/4L 2
, the buckled shape can be that of the first

mode, the second mode, or the third mode, or even a nonlinear combination of the first
three modes. This reveals the characteristic of multiple solutions of a nonlinear system.

V. Cantilever subjected to transverse end load (Fig. 7)
The boundary conditions are

at s = 0: u = v = w = ¢ = T I3 = T I2 = 0, Til = 1

at s = L: (34)
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_ L'n (- Q,rEi2,)
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Fig. 8. The deformation of a cantilever subjected to a uniformly distributed transverse load q,: (a)
the defonned configuration and (b) the force--end deflection curve.

Figure 7a shows the exact deformed beam configurations and Fig. 7b shows the exact
force-end deflection curve.

VI. Cantilever subjected to uniformly distributed transverse load (Fig. 8)
The distributed load is q3 = nE/niL 3, which is always along the axis z even when the

beam is bent. The boundary conditions are

at s = 0: u = v = w = ¢ = T I3 = Til = 0, T , I = 1

at s = L: F, = F\ = F= = M 1 = M 2 = M 3 = O. (35)

Figure 8a shows the exact deformed configurations and it also shows that, when n = 9.25,
L+u(L) = w(L) = 0.68L. The force-end deflection curve shown in Fig. 8b is the same as
that obtained by Sinclair (1979) and Holden (1972).

VII. Fixed-free half circular ring subjected to tangential end load (Fig. 9)
The planar deflection problem ofa beam is the same as the cylindrical bending problem

of a plate or a shell except that the flexural rigidity D is D = E/22 for a beam and
D = Eh 3 j12(1- vl

) for a plate or a shell. The material properties and beam geometry chosen
for Cases VII and VIII are

E = I X 107 psi, v = 0.3

b I· hi. R 5'= :I In, = i2 In, = In, (36)

which is the material used by Goto et al. (1992). Here R is the radius. The corresponding
initial curvatures can be obtained as

SAS 33: 9-1
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Fig. 9. The deformation of a fixed-free half circular ring subjected to a tangential force at the free
end: (a) the deformed configuration and (b) the end deflection-force curve.

The boundary conditions are

at s = 0: u = v = w = ¢ = T 13 = T I2 = 0, T I 1 = 1

(37)

(38)

Figure 9a shows the exact deformed configurations. The exact end deflection-force
curve shown in Fig. 9b shows highly nonlinear phenomenon, where u" == Uls~Rn

VIII. Circular ring subjected to twisting (Fig. 10)
We consider the deformation of a circular ring when it is twisted through an angle e

at one end of a diameter and an angle - e at the other end, as shown in Fig. 10. The
material properties and beam geometry are those shown in eqn (36). We note that one only
needs to analyze one half of the ring and the deformations of the other half can be obtained
by using the symmetry of the structural geometry and the skew-symmetry of the loading
conditions as

u(o:) = -u(2n-o:), v(o:) = -v(2n-o:), w(o:) = w(2n-o:), ¢(o:) = -¢(2n-o:).

(39)

It follows from Fig. 10 that the boundary conditions are



Large-deformation analysis of flexible beams
z

Fig. 10. A circular ring is twisted through an angle f) at both ends of a diameter. where the left end
is immovable.
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Fig. 11. The top, front and side views of a circular ring subjected to different magnitudes of twisting.

at s = 0: u = v = IV = cjJ = T I3 = 0, T I2 = sin e, Til = cos e
ats=Rn: u=v=F==cjJ=TI3 =0, T12 =sine. (40)

Figure 11 shows the top view (i.e. projection onto the X-Y plane), front view (i.e.
projection onto the X-Z plane) and side view (i.e. projection onto the Y-Z plane) for
different magnitudes of twisting. We note that the ring is transformed into a small ring with
a diameter of one-third of its original size when the ring is twisted by 28 = 360". Because
very large bending rotations are involved, we use 81 shooting points for this problem.
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Fig. 12. The required end twisting moment lV, for different magnitudes of twisting.

Figure 12 shows the required end tWlstmg moment £13 for different tWlstmg angle 8.
Although Goto et at. (1992) used 200 finite beam elements in modeling the half ring, there
is still about 7.8% difference in the predicted maximum twisting moment. The difference
may be due to the fact that they neglected the influence of initial curvatures [although initial
curvatures were considered in their previous work (Goto et at., 1985)] and/or because they
used truncated Taylor expansions in their solution method. It is interesting that the
deformed small ring can stay without any external force because M3 = 0 when 28 = 360".

Since b» hand /33 is large, one may think that shear deformation might contribute
very much to the transverse deformation v. As a matter of fact, v is mainly induced by the
interaction of the transverse deflection IV and the torsional deformation.

Figure 13a shows the distribution of ¢ and Fig. 13b shows its derivative. Figures 13b
and c show that PI #- ¢' because PI accounts for relative twisting only but ¢ accounts for
relative twisting and bending-induced rotations [see eqn (18j)]. In other words, ¢ does not
really represent the twisting angle.

4. DISCUSSION

Although deformations of the reference line and large rotations of the observed cross
section are exactly modeled in the presented nonlinear beam theory, some effects are not
considered in the strain-displacement relation [eqn (15)] and the structural stiffness matrix
in eqn (16). They are out-of-plane warpings due to transverse shears and torsions, in-plane
warpings due to Poisson's effect and distributed external loadings, the restraint warping
effect, the trapezoidal-edge effect and the induced extension-bending coupling due to
initial bending curvatures and the extension-twisting coupling due to initial twisting. For
composite and built-up beams, because of anisotropy and heterogeneity of materials, these
effects can be significant and they can be coupled due to elastic couplings.

In-plane and out-of-plane warpings represent extra degrees of freedom for cross­
section deformations and hence affect the structural stiffness values and extension-twisting
and extension-bending couplings result in coupling stiffnesses in the structural stiffness
matrix. The induced extension-bending coupling due to initial bending curvatures and the
extension-twisting coupling due to initial twisting are significant for thick beams.

Warpings result in a three-dimensional stress state. To solve such a three-dimensional
elasticity problem, a three-dimensional finite-element analysis may be the only way, which
is too expensive in order to achieve certain accuracy. Starting from three-dimensional
elasticity and using a perturbation analysis with slenderness ratio as the ordering parameter,
Parker (l979a,b) showed that a combination of St Venant's warping solutions, which are
derived from small displacement linear elasticity and a one-dimensional nonlinear beam
model including large rotations is natural and can account for three-dimensional stress
effects. More specifically, Berdichevskii (1981) stated that the geometrically nonlinear
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Fig. 13. The distributions of cP, cP', and PI when e= 45, e= 90', and () = 157.5 : (a) the a-cP curve,
(b) the a-cP' curve and (c) thea-PI curve.

problem of the three-dimensional beam elasticity can be decoupled into a nonlinear one­
dimensional problem and a linear two-dimensional section problem. In other words, a
one-dimensional nonlinear beam model with structural stiffnesses and warping functions
determined from a linear, static, two-dimensional sectional analysis is a general and practical
approach in solving nonlinear anisotropic beam problems (Parker, 1979a,b; Berdichevskii,
1981; Borri and Merlini, 1986; Hodges, 1990).

Giavotto et at. (1983) presented a two-dimensional, static, sectional, finite-element
analysis of St Venant's warping functions and boundary-layer warping solutions for straight
beams, which formulation is linear and all variables are defined with respect to the unde­
formed coordinate system. Borri and Merlini (1986) extended the theory of Giavotto et at.
(1983) to include geometric nonlinearities by using Green-Lagrange strains. Atilgan and
Hodges (1991) presented a systematic, nonlinear formulation of the sectional analysis of
straight beams, where geometric nonlinearities are accounted by using Green--Lagrange
strains. Pai and Nayfeh (l994b) presented a formulation of using Jaumann stresses and
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strains and the results of two-dimensional sectional analysis in the modeling of naturally
curved and twisted composite rotor blades to account for warpings and three-dimensional
stress effects.

Since only very thin and flexible isotropic beams with closed cross sections are con­
sidered here, all the effects due to warpings and three-dimensional stresses are neglected
except that the torsional rigidity is modified to accounted for the torsional warping effect.

To account for transverse shear deformations, two more differential equations are
needed [see eqns (l8a-f) and eqns (60)-(65) of Pai and Nayfeh (1994b)]. To account for
elastic couplings among bending, torsion and extension of composite beams, the stiffness
matrix in eqn (16) needs to be replaced with a full matrix [see eqns (51a and c) of Pai and
Nayfeh (1994b)].

5. CONCLUDING REMARKS

The numerical results show that the curved beam model does fully account for large
rotations and displacements and effects due to initial curvatures and extensionality. More­
over, the use of the multiple shooting method in solving the highly nonlinear two-point
boundary-value problem of flexible beams is efficient and promising. The obtained eight
numerical solutions of flexible beam deformations are useful for checking the performance
of nonlinear finite-element codes in analyzing large structural deformations.
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